Common regulatory networks in leaf and fruit patterning revealed by mutations in the Arabidopsis ASYMMETRIC LEAVES1 gene.

نویسندگان

  • Hugo Alonso-Cantabrana
  • Juan José Ripoll
  • Isabel Ochando
  • Antonio Vera
  • Cristina Ferrándiz
  • Antonio Martínez-Laborda
چکیده

Carpels and leaves are evolutionarily related organs, as the former are thought to be modified leaves. Therefore, developmental pathways that play crucial roles in patterning both organs are presumably conserved. In leaf primordia of Arabidopsis thaliana, the ASYMMETRIC LEAVES1 (AS1) gene interacts with AS2 to repress the class I KNOTTED1-like homeobox (KNOX) genes BREVIPEDICELLUS (BP), KNAT2 and KNAT6, restricting the expression of these genes to the meristem. In this report, we describe how AS1, presumably in collaboration with AS2, patterns the Arabidopsis gynoecium by repressing BP, which is expressed in the replum and valve margin, interacts in the replum with REPLUMLESS (RPL), an essential gene for replum development, and positively regulates the expression of this gene. Misexpression of BP in the gynoecium causes an increase in replum size, while the valve width is slightly reduced, and enhances the effect of mutations in FRUITFULL (FUL), a gene with an important function in valve development. Altogether, these findings strongly suggest that BP plays a crucial role in replum development. We propose a model for pattern formation along the mediolateral axis of the ovary, whereby three domains (replum, valve margin and valve) are specified by the opposing gradients of two antagonistic factors, valve factors and replum factors, the class I KNOX genes working as the latter.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three PIGGYBACK genes that specifically influence leaf patterning encode ribosomal proteins.

Leaves are determinate organs that arise from the flanks of the shoot apical meristem as polar structures with distinct adaxial (dorsal) and abaxial (ventral) sides. Opposing regulatory interactions between genes specifying adaxial or abaxial fates function to maintain dorsoventral polarity. One component of this regulatory network is the Myb-domain transcription factor gene ASYMMETRIC LEAVES1 ...

متن کامل

Meta-Analyses of Microarrays of Arabidopsis asymmetric leaves1 (as1), as2 and Their Modifying Mutants Reveal a Critical Role for the ETT Pathway in Stabilization of Adaxial–Abaxial Patterning and Cell Division During Leaf Development

It is necessary to use algorithms to analyze gene expression data from DNA microarrays, such as in clustering and machine learning. Previously, we developed the knowledge-based fuzzy adaptive resonance theory (KB-FuzzyART), a clustering algorithm suitable for analyzing gene expression data, to find clues for identifying gene networks. Leaf primordia form around the shoot apical meristem (SAM), ...

متن کامل

Novel as1 and as2 defects in leaf adaxial-abaxial polarity reveal the requirement for ASYMMETRIC LEAVES1 and 2 and ERECTA functions in specifying leaf adaxial identity.

The shoot apical meristem (SAM) of seed plants is the site at which lateral organs are formed. Once organ primordia initiate from the SAM, they establish polarity along the adaxial-abaxial, proximodistal and mediolateral axes. Among these three axes, the adaxial-abaxial polarity is of primary importance in leaf patterning. In leaf development, once the adaxial-abaxial axis is established within...

متن کامل

The Arabidopsis organelle-localized glycyl-tRNA synthetase encoded by EMBRYO DEFECTIVE DEVELOPMENT1 is required for organ patterning

Leaves develop as planar organs, with a morphology that is specialized for photosynthesis. Development of a planar leaf requires genetic networks that set up opposing adaxial and abaxial sides of the leaf, which leads to establishment of dorsoventral polarity. While many genes have been identified that regulate adaxial and abaxial fate there is little information on how this is integrated with ...

متن کامل

The proteolytic function of the Arabidopsis 26S proteasome is required for specifying leaf adaxial identity.

Polarity formation is central to leaf morphogenesis, and several key genes that function in adaxial-abaxial polarity establishment have been identified and characterized extensively. We previously reported that Arabidopsis thaliana ASYMMERTIC LEAVES1 (AS1) and AS2 are important in promoting leaf adaxial fates. We obtained an as2 enhancer mutant, asymmetric leaves enhancer3 (ae3), which demonstr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 134 14  شماره 

صفحات  -

تاریخ انتشار 2007